
Wind-US Installation Guide∗

The NPARC Alliance

NASA Glenn Research Center

Cleveland, Ohio

USAF Arnold Engineering Development Complex

Tullahoma, Tennessee

∗This is an unnumbered version of this document, created November 4, 2016. Please send corrections, additions,
ideas, etc., to Dennis Yoder at Dennis.A.Yoder@nasa.gov.

Contents

1 Overview 1

2 Obtaining Wind-US and the Tools 3
2.1 NSCKN (NASA Safety Center Knowledge Now) . 3
2.2 Wind Projects . 4
2.3 Tools Projects . 5
2.4 Process Projects . 5

3 Installing the Build Distributions 7
3.1 Building Wind-US . 7
3.2 Building the Tools . 11
3.3 Tips for Installing on a UNIX System . 16

3.3.1 Using Symbolic Links for Similar Systems . 16
3.3.2 Installation for NFS Access . 17
3.3.3 Installation for Parallel Execution on Distributed Systems 17

4 Installing and Running the Build Distributions on the NAS 19
4.1 Security Issues on the NAS . 19
4.2 Storage Issues on the NAS . 19
4.3 Computational Resources on the NAS . 19
4.4 Building Wind-US on the NAS . 20
4.5 Building the Tools on the NAS . 24
4.6 Running Wind-US on the NAS . 29

5 Porting Wind-US to a New UNIX Platform 33
5.1 Porting Guidelines . 33
5.2 Frequently (or not) Encountered Problems . 34

iii

1 Overview

The NPARC Alliance flow simulation system is distributed to users as a collection of compressed
tar files containing the source code to Wind-US and several pre- and post-processing tools. These
build distributions enable users to compile optimized executables for their particular computational
platform(s).

Wind-US Build Distribution
The Wind-US build distribution contains all the files needed to build, install, and run
Wind-US on a variety of platforms. This includes:

• Source code for the Wind-US flow solver.
• Source code for all the required library routines, including PVM but not MPI.
• Scripts needed to run Wind-US.
• Makefiles for a variety of computational platforms.

This distribution includes the PVM source code but not MPI, since there are several
popular versions of MPI. If Wind-US is to be run on a multi-processor system using MPI,
you will need to configure the makefiles to compile and link with your locally-installed
MPI libraries.

Tools Build Distribution
The tools build distribution contains all the files needed to build, install, and run one or
more of the tools on a variety of platforms. These tools can briefly be summarized as:

• GMAN, a pre-processor used for setting boundary conditions and multi-zone con-
nectivity. (see the GMAN User’s Guide)

• MADCAP, intended primarily as a successor to GMAN, and potentially as a single
user interface for accessing a range of tools and processes used to perform CFD
analyses. (see the MADCAP User’s Guide)

• CFPOST, a post-processor used to list and plot results, generate reports, and produce
files for other post-processors. (see the CFPOST User’s Guide)

• A variety of smaller utilities, described in the Wind-US Utilities Guide.

The tools build distribution includes:

• Source code for the tools
• Source code for all the required library routines
• Scripts needed to run the tools
• Makefiles for a variety of computational platforms

Process Build Distributions
The process build distributions contain the files needed to build other (typically third-
party) software that supports the Wind-US simulation process. This includes:

• HTX heat transfer solver
• FieldView Reader
• Tecplot Loader

These distributions come with their own installation instructions and may require you to
first compile the shared libraries that are part of the Wind-US build distribution.

Note that the availability of this software does not constitute an official endorsement by
the NPARC Alliance or its members. Other vendors and developers that would like to
include Wind-US compatibility in their products are encouraged to contact the NPARC

1

Wind-US Installation Guide

Alliance User Support Team via email to nparc-support@arnold.af.mil, or by phone
at (931) 454-7885.

2

2 Obtaining Wind-US and the Tools

Wind-US, and the associated pre- and post-processing tools, are releasable to all U. S. owned
companies, public and private universities, and government agencies. However, only U. S. citizens
and resident aliens may have access to the software. In general, requests from foreign owned,
controlled, or influenced (i.e., those with nonresident foreign nationals on the board of directors)
corporations will not be granted. Instructions for becoming a registered user may be accessed from
the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/index.html. You may
also contact the NPARC Alliance User Support Team via email to nparc-support@arnold.af.mil,
or by phone at (931) 454-7885.

2.1 NSCKN (NASA Safety Center Knowledge Now)

Approved users download Wind-US and the tools from the NSCKN (NASA Safety Center Knowl-
edge Now) website or via secure email. Instructions on obtaining a NSCKN account will be supplied
by the NPARC Alliance User Support Team when you become a registered Wind-US user. Once
your NSCKN account has been activated, you can login to NSCKN through the login page.

After logging in to NSCKN, you will initially be connected to an opening page similar to the one
shown in Figure 1.

Figure 1: NSCKN Home Page.

3

Wind-US Installation Guide

Clicking on the ”+” sign next to the Downloads folder expands the list of available projects to
download. Clicking on any folder name will open a new page with a folder tree displayed on the left
pane and the contents of the current directory on the right pane (Figure 2).

Figure 2: Downloads Page.

2.2 Wind Projects

Several different versions of Wind-US may be listed in the downloads folder. Each major release
is contained within its own subfolder. Different revisions of that release may be available as bug
fixes are made, though typically only the most recent is posted. An example is given in Figure 3.

Figure 3: Wind-US Download Page.

To download the file, select the file name and then View from the Document menu. Build
distributions will be in the form of a compressed tar file with a .tgz extension.

4

2 Obtaining Wind-US and the Tools

2.3 Tools Projects

The various pre- and post-processing tools are contained within the Tools folder. Because the
individual tools are numbered independently and developed in an on-going manner rather than
major releases, only one Tools folder is used. Within that folder is a compressed tar-file containing
the source code for the latest available version of all the tools. This is illustrated in Figure 4.

Figure 4: Tools Download Page.

To download the file, select the file name and then View from the Document menu. Build
distributions will be in the form of a compressed tar file with a .tgz extension.

2.4 Process Projects

Software for use with third-party applications is contained in the Process folder (Figure 5). Only
the latest version of each is included. To download the file, select the file name and then View from
the Document menu. Build distributions will be in the form of a compressed tar file with a .tar.gz
extension.

Figure 5: Process Download Page.

5

3 Installing the Build Distributions

Wind-US and the tools are designed to be compiled in a build (or development) directory and
then the final executables installed into an application directory. This allows one to install multiple
versions of Wind-US into a single application directory that uses shared run-time scripts. The user
can select which version to use at run-time. The following sections describe the steps necessary to
install the build distributions in this manner.

3.1 Building Wind-US

Makefiles are distributed with the Wind-US build distribution for a variety of platform, operating
system, and CPU combinations, including:

• Convex
• Cray
• Hewlett-Packard

– HP-UX 11.x ; PA-8600 processor
• IBM RS6000; PC600 processor
• Linux

– glibc 2.3-2.19; Athlon, Xeon, Opteron, and X86 processors
– SUSE; Opteron processor

• Silicon Graphics IRIX 6.5; R4400, R5000, R8000, R10000, R12000, R14000, R16000 processors
• Sun Solaris 8 and 9; SPARC4U processor

If you need to build the code for a platform not listed above, you will need to first create
the appropriate makefiles, using the existing ones as a starting point. See Section 5 for further
information. The NPARC Alliance User Support Team (nparc-support@arnold.af.mil, or (931)
454-7885) may also be able to provide guidance when creating and naming new makefiles.

Assuming the appropriate makefiles exist, the recommended procedure to build and install
Wind-US from source is as follows. Please re-read each step completely before executing any com-
mands that are described.

1. Create an appropriate top-level directory.

mkdir -p $HOME/WINDUS
cd $HOME/WINDUS

This will ultimately contain the build/development source (wind-dev) and application exe-
cutable (wind) subdirectories.

If an existing top-level Wind-US installation directory is to be used, the existing wind-dev
subdirectory should be renamed so that it is not overwritten. Any makefiles you may have
modified within this directory may be of use in constructing makefiles for the new installation.

When installing multiple versions into a shared installation directory, one should start with
the oldest version and work towards the newest. This way the most current run scripts will be
made available. Installing an older version into an existing directory might install older run
scripts that do not support more recent code options.

2. Put the gzip’ed tar file containing the Wind-US build distribution into this directory. You
should now have a file of the form:

dist.windus.x.xxx.tgz

7

Wind-US Installation Guide

3. Unpack the Wind-US build distribution by doing:

gunzip -c filename | tar xvf -

where filename is the file name, including the .tgz extension. This creates a directory named
wind-dev containing the Wind-US source code. There will also be two scripts to assist with
the installation: Install.appl and Install.tools.

If you also plan to install the tools, you should follow those instructions in parallel with
these. In particular, it is important to unpack the tools build bundle before proceeding with
any changes to the makefiles. Otherwise those changes could be overwritten when you do
eventually unpack the tools.

4. Use the installation script to create the application directory and copy some necessary scripts.
Responses to the interactive prompts are shown in italic font.

./Install.appl

Under what parent directory should Wind-US be installed?
(Default is current directory):

Hit enter to accept the default directory.

Run scripts will be installed in $HOME/WINDUS/wind/bin
Is this OK? (y/n [y])
Answer: y

Copying files to $HOME/WINDUS/wind
Modifying cfd.login and cfd.profile

Wind-US scripts have been copied to the installation directory.
To finish the installation ...

csh/tcsh users: add the following line to your .login file
source $HOME/WINDUS/wind/bin/cfd.login

sh/bash/ksh users: add the following line to your .profile file
. $HOME/WINDUS/wind/bin/cfd.profile

5. Update the login scripts

Follow the instructions described by the script output to update your login scripts. At the same
time, define the environment variable WIND_DEV as the location of the directory containing the
top-level Makefile. This should be the full path to the wind-dev directory.

Typically, csh and tcsh users must edit their $HOME/.login file and add the following two
lines:

setenv WIND_DEV "path name/wind-dev"
source path name/wind/bin/cfd.login

where again path name is the full path name of the directory used in step 1. Similarly, bash,
ksh, and sh users must edit their $HOME/.profile file and add the following two lines:

WIND_DEV="path name/wind-dev"; export WIND_DEV
. path name/wind/bin/cfd.profile

8

3 Installing the Build Distributions

This causes the contents of the cfd.login (or cfd.profile) file to be executed automatically at
login time to set up the environment variables CFDROOT, SYSTEM, and SYSTEM_CPU, that are
required for installing and running Wind-US, and to modify your PATH to include the location
of the Wind-US executable.

6. At this point, log out and log back in to execute your .login or .profile file (depending on your
login shell). Alternatively, in your home directory execute (for csh and tcsh users)

source .login

or (for sh and ksh users)

. .profile

7. Check to see if the environment variables have been set to appropriate values, by doing

printenv WIND_DEV
printenv CFDROOT
printenv SYSTEM
printenv SYSTEM_CPU

WIND_DEV was defined in step 5. CFDROOT should have a value of path name/wind where
path name is the full path name of the directory used in step 1. This represents the root
location that contains the Wind-US executable(s) and scripts. SYSTEM and SYSTEM_CPU should
describe the operating system and cpu type. If all are correctly set, skip the next step.

8. If CFDROOT is not set properly, you will need to manually edit the Wind-US login script.
Denoting path name as the full path name (starting with a “/”) of the directory used in step 1,
users of the csh or tcsh shell should edit the file path name/wind/bin/cfd.login to modify the
definition of CFDROOT as follows:

if (! "$?CFDROOT") then
#=BEGROOT=
setenv CFDROOT "path name/wind"

#=ENDROOT=
endif

Similarly, bash, ksh, or sh users would edit the file path name/wind-dev/bin/cfd.profile to
modify the definition of CFDROOT to:

if [! "$CFDROOT"] ; then
#=BEGROOT=
CFDROOT="path name/wind"

#=ENDROOT=
export CFDROOT

fi

Return to step 6 to have this change take effect.

9. Now that the environment variables are set properly, move into the WIND_DEV directory.

cd $WIND_DEV

10. Configure the makefiles.

The default values in the configuration files should be sufficient to produce an executable on
most well-configured systems (assuming that compilers are installed). The primary exception
to this is Linux, which does not have a “default” Fortran 90/95 compiler. Another potential
problem is the location of the MPI libraries, which needs to be specified if you wish to use

9

Wind-US Installation Guide

MPI for parallel runs. To be safe, review the contents of the following files or parts of files,
where SYSTEM and SYSTEM CPU correspond to the SYSTEM and SYSTEM_CPU environment
variables, paying special attention to the items noted below.

When modifying files it is always a good idea to save a copy of the original (i.e., as *.bak),
and for new files to create an empty *.bak file. This makes it easy to identify which files you
have changed, and you can use a visual difference program to compare those changes against
the original.

• Makefile.configure

– If you are compiling on a multi-processor system with MPI message passing avail-
able, change the definition of USE_MPI from NO to YES. This will link in the MPI
libraries, allowing the use of MPI message passing for parallel processing. Note,
though, that because Wind-US uses dynamically-linked libraries, an executable cre-
ated with USE_MPI equal to YES will not run on multi-processor systems without
MPI.

– If you will never be running parallel jobs using PVM message passing, change the
definition of USE_PVM from YES to NO.

– The value of PRECISION may be changed to make all Fortran variables single or double
precision. The default is a mix, with single precision for the mean flow solution and
boundary conditions, and double precision for chemistry data, right-hand-side data,
grid coordinates, and grid metrics.

• source/Makefile.user

– Defines which of the Wind-US modules should be compiled. Only in rare circum-
stances does this file need to be modified.

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.xxx, where xxx corresponds
to opt, dbx, pure, or check. Most users compile the optimized (opt) version.

– This file contains the compiler optimizations for the specific system being used.

– Check the definition of CPP, which is the full path name for the C pre-processor cpp,
to make sure it is correct for your system. On many systems, you can locate cpp
using the whereis command.

whereis -b cpp

– For Linux systems, you will most likely have to change the definitions related to the
Fortran and C compilers being used (i.e., the variables ABI, FC, F90, LD, etc.) These
lines should be commented/uncommented as needed for your system, but additional
changes may also be necessary or desired.

– If you are compiling on a multi-processor system with MPI message passing, check
the definition of MPILIBS, and modify it if necessary to use a different version or a
non-standard location.

– If your system doesn’t support the Fortran long integer data type, add “-DNOFLONG”
(without the quotes) to the definition of WINDDEFS. Errors in the compilation of
mem management module.f90 about an ambiguous definition for the generic inter-
faces alloc and dealloc, involving the specific interfaces for allockindlong_1 and
allockindint_1, etc., are an indication that “-DNOFLONG” is needed.

10

3 Installing the Build Distributions

11. Compile the Wind-US source.

From the WIND_DEV directory, run make to create all the required libraries and executables
for running Wind-US. The output from the compilation process is very lengthy. To capture
the output from make in the file make.log for later examination if something goes wrong, in
addition to displaying it at the terminal, csh and tcsh users should do

make opt |& tee make.log

and sh and ksh users should do

make opt 2>&1 | tee make.log

If the compilation is successfull, the Wind-US executable should be present in the directory
$WIND DEV/SYSTEM/SYSTEM CPU/bin.

12. To install the compiled Wind-US and PVM executables into the application directory, use the
following commands:

make install
make install_scripts
make copy_pvm

The first two commands copy the Wind-US executable to $CFDROOT/SYSTEM/CPU/bin,
and the scripts to $CFDROOT/bin. The third copies the PVM executables and libraries to
$CFDROOT/pvm/lib/SYSTEM/CPU, some PVM include files to $CFDROOT/pvm/include,
and PVM scripts to $CFDROOT/pvm/lib. The parameters SYSTEM and CPU correspond
to the SYSTEM and SYSTEM_CPU environment variables, respectively.

Note that the Wind-US executables are named by major revision number (i.e., Wind-US4.exe).
However, in some cases, such as before and after a bug fix, it is useful to retain minor revisions.
To do so, before issuing the install commands listed above, you should rename the existing ex-
ecutable in the application directory ($CFDROOT/SYSTEM/SYSTEM CPU/bin) to include
the minor revision number (i.e., Wind-US4.111.exe). The windver script can be used to print
the version number for a particular executable.

13. It would be best to log out and log back in before running Wind-US. This executes the shell
start-up scripts, modifying the PATH environment variable to include the newly-created location
for the Wind-US executable.

3.2 Building the Tools

The tools build distribution is designed to be a completely independent package, so that the tools
can be built without requiring any additional files from Wind-US. Thus, one could have separate
directory trees for the Wind-US build distribution and tools build distributions. This would lead to
a great deal of duplication, however. Therefore, the build distributions are designed to overlay one
another. The following instructions assume that all the tools are being built in the same directory
tree. Please re-read each step completely before executing any commands that are described.

1. Create an appropriate top-level directory.

mkdir -p $HOME/WINDUS
cd $HOME/WINDUS

This will ultimately contain the build/development source (wind-dev), more specifically (wind-
dev/tools-dev), and tools executable (tools) subdirectories.

11

Wind-US Installation Guide

An existing top-level Wind-US directory is often used for this purpose, since it reduces the
amount of extra disk space and configuration necessary. In this case, you will want to use the
directory above wind-dev. See step 1 in Section 3.1.

2. Install lua version 4.01 if it is not already available on your system. Note that due to changes
in the API, newer versions of lua will not work with the Wind-US tools. These instructions
assume that lua will be installed under the top-level directory of step 1. However, it could be
installed in its own stand-alone location.

Download the source code from http://www.lua.org/ftp/lua-4.0.1.tar.gz and save as:

lua.4.0.1.tar.gz

Unpack the source files.

gunzip -c lua.4.0.1.tar.gz | tar xvf -

This will extract the lua.4.0.1 directory. To compile lua,

cd lua.4.0.1
make

This should create the following files:

$HOME/WINDUS/lua-4.0.1/bin/lua
$HOME/WINDUS/lua-4.0.1/bin/luac
$HOME/WINDUS/lua-4.0.1/lib/liblua.a
$HOME/WINDUS/lua-4.0.1/lib/liblualib.a

3. Install the CGNS library if it is not already available on your system. Once again, these
instructions assume that it will be installed under the top-level directory of step 1. However,
it could be installed in its own stand-alone location.

Download cgnslib (2.5.5) from https://cgns.github.io/download.html and save as:

cgnslib.2.5.5.tar.gz

Newer versions of cgnslib may also work. Unpack the source files.

gunzip -c cgnslib.2.5.5.tar.gz | tar xvf -

This will extract the cgns 2.5 directory. Compile the CGNS library with commands similar
to the following. You may need to adjust the settings, depending on your system.

cd $HOME/WINDUS/cgnslib_2.5
./configure --prefix=$HOME/WINDUS/cgnslib_2.5 --with-system=LINUX64 --enable-64bit
make SYSTEM=LINUX64
mkdir include
mkdir lib
make install

This should create the following files:

$HOME/WINDUS/cgnslib_2.5/include/cgnslib.h
$HOME/WINDUS/cgnslib_2.5/include/cgnslib_f.h
$HOME/WINDUS/cgnslib_2.5/include/cgnswin_f.h
$HOME/WINDUS/cgnslib_2.5/lib/libcgns.a

4. Put the gzip’ed tar file containing the tools build distribution into the top-level directory used
in step 1. You should now have a file of the form:

12

http://www.lua.org/ftp/lua-4.0.1.tar.gz
https://cgns.github.io/download.html

3 Installing the Build Distributions

dist.alltools.tgz

5. Unpack the tools build distribution by doing:

gunzip -c dist.alltools.tgz | tar xvf -

This extracts a directory named wind-dev containing the source code. The source code for
individual tools will be located in subdirectories of wind-dev/tools-dev. There will also be two
scripts to assist with the installation: Install.appl and Install.tools.

If you also plan to install Wind-US, you should follow those instructions in parallel with
these. In particular, it is important to unpack all of the build bundles before proceeding with
any changes to the makefiles. Otherwise those changes could be overwritten when unpacking
another bundle.

6. Follow steps 4-8 in Section 3.1 and verify that the WIND_DEV, CFDROOT, SYSTEM, and SYSTEM_CPU
environment variables are correctly defined.

7. Use the installation script to create the application directory and copy some necessary scripts.
Responses to the interactive prompts are shown in italic font.

./Install.tools

Under what parent directory should the tools be installed?
(Default is current directory):

Hit enter to accept the default directory.

Run scripts will be installed in $HOME/WINDUS/tools/bin
Is this OK? (y/n [y])
Answer: y

Copying files to $HOME/WINDUS/tools
Modifying tools.login and tools.profile

Tools scripts have been copied to the installation directory.
To finish the installation ...

csh/tcsh users: add the following line to your .login file
source $HOME/WINDUS/tools/bin/tools.login

sh/bash/ksh users: add the following line to your .profile file
. $HOME/WINDUS/tools/bin/tools.profile

8. Update the login scripts.

Follow the instructions described by the script output to update your login scripts. Typically,
csh and tcsh users must edit their $HOME/.login file and add the following line:

source path name/tools/bin/tools.login

where again path name is the full path name of the directory used in step 1. Similarly, bash,
ksh, and sh users must edit their $HOME/.profile file and add the following line:

. path name/tools/bin/tools.profile

This causes the contents of the tools.login (or tools.profile) file to be executed automatically
at login time to set up the TOOLSROOT environment variable that is required for installing and

13

Wind-US Installation Guide

running the tools, and to modify your PATH to include the location of the tools executables.

9. At this point, log out and log back in to execute your .login or .profile file (depending on your
login shell). Alternatively, in your home directory execute (for csh and tcsh users)

source .login

or (for sh and ksh users)

. .profile

10. Verify that the TOOLSROOT environment variable is properly set, by doing:

printenv TOOLSROOT

It should have a value of path name/tools where path name is the full path name of the
directory used in step 1. If it is, skip the next step.

11. If TOOLSROOT is not set properly, you may need to manually edit the tools login script. Denoting
path name as the full path name (starting with a“/”) of the directory used in step 1, users of the
csh or tcsh shell should edit the file path name/tools/bin/tools.login to modify the definition
of TOOLSROOT as follows:

#=BEGROOT=
setenv TOOLSROOT "path name/tools"
#=ENDROOT=

Similarly, bash, ksh, or sh users would edit the file path name/tools/bin/tools.profile to modify
the definition of TOOLSROOT to:

#=BEGROOT=
TOOLSROOT="path name/tools"
#=ENDROOT=
export TOOLSROOT

Return to step 9 to have this change take effect.

12. Now that the environment variables are set properly, move into the WIND_DEV directory.

cd $WIND_DEV

13. Configure the makefiles.

Most systems other than Linux should be able to use the default values in the configuration
files without problem. On Linux systems, it is likely that the definitions related to the Fortran
and C compilers will have to be changed. To be safe, check the following files to be sure
they contain information that is appropriate for your system. (See the notes for step 10 in
Section 3.1.)

• Makefile.configure

– See the instructions in step 10 of Section 3.1

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

– See the instructions in step 10 of Section 3.1

– Comment out (or not) the explicit static and shared library settings as appropriate:

#TOOLS_STATLIB= -static
#TOOLS_SHARLIB= -shared

14

3 Installing the Build Distributions

Note that the default behavior of the Intel compiler is to use shared libraries. In
some versions of the compiler, specifying the -shared option leads to linker errors.
Thus, for Intel compilers, it is recommended to leave both settings commented out.

– Provide the proper locations of Tcl, Lua, and CGNS. These may differ depending
on your system setup, but are typically set to:

TOOLS_TCLLIBS= -L/usr/lib64 -ltcl8.5
TOOLS_LUALIBS= -L/$(HOME)/WINDUS/lua-4.0.1/lib -llua -llualib
TOOLS_CGNSLIBS= -L/$(HOME)/WINDUS/cgnslib_2.5/lib -lcgns
TCL_INCLUDE= $(INCCMD)/usr/include
LUA_INCLUDE= $(INCCMD)/$(HOME)/WINDUS/lua-4.0.1/include
CGNS_INCLUDE= $(INCCMD)/$(HOME)/WINDUS/cgnslib_2.5/include

– Provide the proper locations of the compiler libraries defined by TOOLS_OSLIBS,
TOOLS_CPPLIBS, and MADCAP_OSLIBS.

• source/makefiles/pvm conf/SYSTEM.SYSTEM CPU.def.opt

– Do not bother configuring or creating this file unless you encounter an error during
the compilation process. This file is used to override the default settings given in a
similarly named pvm/conf/SYSTEM.def file.

• tools-dev/Makefile

– This file defines the make dependencies and rarely needs to be changed.

• tools-dev/libmdgl/SYSTEM.mkf

– This file is used to compile the graphics library needed by GMAN, CFPOST, and
MADCAP.

14. Compile the tools source.

In the WIND_DEV directory, run make to create all the required libraries and executables for
all the tools for which you have installed source. To capture the output from make in the file
make tools.log for later examination if something goes wrong, in addition to displaying it at
the terminal, csh and tcsh users should do

make all_tools |& tee make_tools.log

and sh and ksh users should do

make all_tools 2>&1 | tee make_tools.log

You can also compile tools individually, by doing

make tool name

where tool name is the name of the tool. Note that the names to be used for GMAN, CFPOST,
and MADCAP are gmanpre, cfpost prod, and madcapprod, respectively.

The $WIND DEV/SYSTEM/SYSTEM CPU/bin directory will contain the executables for
the various tools if the compilation is successful.

15. Copy the executable and library files from the build directory to the application directory
where they will be used. This is done via the command:

make install_tools

15

Wind-US Installation Guide

This copies the tools executables to $TOOLSROOT/SYSTEM/CPU/bin, where SYSTEM and
CPU correspond to the SYSTEM and SYSTEM_CPU environment variables, as described in step
11 in Section 3.1.

16. It would be best to log out and log back in again before running any of the tools. This
executes the shell start-up scripts, modifying the PATH environment variable to include the
newly-created location for the tools executables.

3.3 Tips for Installing on a UNIX System

3.3.1 Using Symbolic Links for Similar Systems

In general, it is recommended to compile executables on each machine type that you will use.
However, in some situations two machines may be similar enough that the same executable can be
used with only a minor degradation in performance. In that case, symbolic links may be used to
specify that a different (but compatible) executable should be used instead.

Suppose you have compiled executables for a LINUX64-GLIBC2.5 system with a XEON processor,
but would also like to provide binaries for OPTERON processors. You can share the available executable
by creating a symbolic link. The Wind-US, PVM, and tools executables are stored in a directory
hierarchy designated by the SYSTEM and SYSTEM_CPU environment variables. Symbolic links must
be created in the appropriate locations within the wind, wind/pvm, and tools subdirectories. For
the case described, the easiest mechanism for sharing the executables is to create a symbolic link
between the XEON and OPTERON directories.

ln -s XEON OPTERON

The resulting directory structure will be:

wind install/
wind/

LINUX64-GLIBC2.5/
XEON/
OPTERON -> XEON/
...

bin/
...

pvm/
lib/

LINUX64-GLIBC2.5/
XEON
OPTERON -> XEON/
...

tools/
LINUX64-GLIBC2.5/

XEON/
OPTERON -> XEON/
...

bin/
...

where the notation “OPTERON -> XEON/” is used to indicate that OPTERON is a symbolic link pointing
to XEON/.

16

3 Installing the Build Distributions

3.3.2 Installation for NFS Access

If multiple users in an organization will be running Wind-US, it is convenient to install the
Wind-US and tools executables below a parent directory that can be accessed by all the users via
a network file system (NFS). This way, the location and method of accessing the executables will
be the same on all user machines, and they can be centrally updated without any significant effort
from individual users. It is suggested that one individual from an organization download the needed
application distributions and serve as a single point of contact for Wind-US.

When the scripts and executables are to be accessed via NFS, if the path name used by the user
to access the NFS-mounted file system is different from the actual directory name on the “host”
system, a slight variation of the above installation procedure is necessary. That’s because the user’s
environment variables CFDROOT and TOOLSROOT must define the NFS-mounted location of the wind
and tools subdirectories. Similarly, the lines users add to their .login or .profile files should specify
path names used to access the NFS-mounted file system.

NFS file systems are typically accessed using automount. As an example, assume that Wind-US
and the tools have been installed on a host workstation named wind machine, and that the parent
installation directory is /usr/local/wind nfs. On wind machine, that directory is exported read-only
to the “home” system, normally an individual’s workstation, of each Wind-US user. The user can
then access that directory via automount by adding “/net/wind machine” to the beginning of the
path name. E.g.,

cd /net/wind_machine/usr/local/wind_nfs

The cfd.login, etc., files on wind machine should be copied to new files named cfd.nfs.login, etc.1

The definitions of CFDROOT and TOOLSROOT in cfd.nfs.login, etc., should be modified to point to the
automount’ed location of the wind and tools subdirectories. I.e., in cfd.nfs.login CFDROOT is defined
as

setenv CFDROOT /net/wind_machine/usr/local/wind_nfs/wind

and in tools.nfs.login TOOLSROOT is defined as

setenv TOOLSROOT /net/wind_machine/usr/local/wind_nfs/tools

Finally, using the above example, csh and tcsh users accessing Wind-US via automount would
modify their .login file to add the lines

source /net/wind_machine/usr/local/wind_nfs/wind/bin/cfd.nfs.login
source /net/wind_machine/usr/local/wind_nfs/tools/bin/tools.nfs.login

and sh and ksh users would modify their .profile file to add the lines

. /net/wind_machine/usr/local/wind_nfs/wind/bin/cfd.nfs.profile

. /net/wind_machine/usr/local/wind_nfs/tools/bin/tools.nfs.profile

Users accessing via NFS would not need to set the WIND_DEV environment variable, since they would
not be compiling the source code.

3.3.3 Installation for Parallel Execution on Distributed Systems

It should be noted that Wind-US does not need to be installed on each individual machine in order
to run in parallel mode using a network of distributed systems. The executables for all the different

1 This is done so that users logging directly onto wind machine can still access Wind-US as described in the
previous sections.

17

Wind-US Installation Guide

types of systems and CPUs being used are installed only on the master system. The Wind-US run
scripts automatically take care of copying the appropriate Wind-US and PVM executables and files
to the systems being used, starting and stopping the message passing software, and cleaning up at
the end of the run. See the “Parallel Processing” section of the Wind-US User’s Guide for details.

When using MPI for parallel communication, the MPI libraries should be installed on each worker
machine.

18

4 Installing and Running the Build Distributions on the NAS

Pre-compiled executables for Wind-US and/or the tools are not available for the NASA Advanced
Supercomputing (NAS) systems: columbia and pleiades. User’s must install the build distribution
into their local directory. This section describes the procedure for doing this.

4.1 Security Issues on the NAS

User’s are reminded that they are responsible for protecting the dissemination of Wind-US,
particularly on a shared computer resource like the NAS. It is therefore recommended that users
restrict the access permissions on their NAS home and nobackup directories to prevent access from
other users. If this is not already the default behavior, one can use the following commands.

• To restrict access to an existing file or directory use the command:
chmod go-rwx filename

• To restrict access to all future files and directories created during the current session use the
command:

umask 077
• Depending on which linux shell is being used, the umask command above can be placed in the

$HOME/.login or $HOME/.profile login scripts to apply to future sessions.

4.2 Storage Issues on the NAS

Storage space on NAS is split between a rather limited $HOME directory and a larger /nobackup/$USER
directory. Most users install Wind-US into their home directory and submit jobs from their nobackup
directory. Offline tape storage is available by transferring files to the machine called lou. Please see
the NAS website (http://www.nas.nasa.gov/) for additional details.

4.3 Computational Resources on the NAS

The NAS computing cluster is comprised of various computing nodes, each of which contains a
different number and type of core processors. The user must select which nodes to use by specifying
the model name within the PBS script.

Because each processor type has a different computational efficiency, NAS charges for their use
via a Standard Billing Unit (SBU). In this scheme, use of faster computing nodes incurs a larger SBU
cost. Each submitted job is is given exclusive access to the requested nodes. The user is charged for
using each node, even if the job does not utilize all of the available processors. To make the most of
their allotted time on NAS, users should try to fully utlize each computing node. The table below
summarizes the available computing resources.

Note: The amount of memory available to a PBS job is less than the total physical memory
because the system kernel can use up to 4 GB of memory in each node.

For more information, visit:

• http://www.nas.nasa.gov/hecc/support/kb/Resources-Request-Examples_188.html

• http://www.nas.nasa.gov/hecc/support/kb/Pleiades-Configuration-Details_77.html

19

http://www.nas.nasa.gov/hecc/support/kb/Resources-Request-Examples_188.html
http://www.nas.nasa.gov/hecc/support/kb/Pleiades-Configuration-Details_77.html

Wind-US Installation Guide

Table 1: NAS Computing Resources

Processor Type Model Name SBU/node CPUs/node RAM(GB)/node
Sandy Bridge san 1.82 16 32
Ivy Bridge ivy 2.52 20 64
Haswell has 3.34 24 128

Broadwell bro 4.04 28 128

4.4 Building Wind-US on the NAS

1. Download the Wind-US Build Distribution.

This distribution contains all of the necessary run scripts and source files needed to compile
and run Wind-US. Registered users are provided the source bundle and/or instructions for
downloading it themselves. You should have a file for the form:

dist.windus.4.111.tgz

2. Transfer the build bundle to NAS (columbia or pleiades).

Put the build bundle in the (new) directory $HOME/WINDUS where the source will be
installed. You should now have:

$HOME/WINDUS/dist.windus.4.111.tgz

3. Unpack the build bundle on NAS.

cd $HOME/WINDUS
tar xzf dist.windus.4.111.tgz

This should extract everything to the new subdirectory:

$HOME/WINDUS/wind-dev

4. Update the NAS login scripts.

Users of csh and tcsh shells must edit the $HOME/.cshrc or $HOME/.tcshrc file respectively
and make sure the following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.12r26
setenv MPI_NUM_MEMORY_REGIONS 0
setenv WIND_DEV "$HOME/WINDUS/wind-dev"
setenv CFDROOT "$HOME/WINDUS/wind-dev"
source $HOME/WINDUS/wind-dev/bin/cfd.login

Similarly, bash, ksh, and sh users must edit their $HOME/.profile file and add make sure the
following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.12r26
MPI_NUM_MEMORY_REGIONS = 0 ; export MPI_NUM_MEMORY_REGIONS
WIND_DEV = "$HOME/WINDUS/wind-dev" ; export WIND_DEV
CFDROOT = "$HOME/WINDUS/wind-dev" ; export CFDROOT
. $HOME/WINDUS/wind-dev/bin/cfd.profile

20

4 Installing and Running the Build Distributions on the NAS

This sets up the Intel Fortran/C compilers, loads SGI’s MPI message passing toolkit, and
causes the contents of the cfd.login (or cfd.profile) file to be executed automatically for each new
shell instance. The environment variables CFDROOT, WIND_DEV, SYSTEM, and SYSTEM_CPU, that
are required for installing and running Wind-US will also be set, and the PATH will be modified
to include the location of the Wind-US executable directories. Setting MPI_NUM_MEMORY_REGIONS
to 0 disables the MPI data buffer in order to avoid cache trashing.

Note that the application directory (CFDROOT) is set to the same location as the build/development
directory (WIND_DEV). One could instead use a separate application directory as described in
the installation instructions for a general system. However, most NAS users do not need that
additional flexibility and want to get the code working as quickly as possible.

5. Test the NAS login scripts.

At this point, log out and log back in. Check to see if the environment variables have been set
to appropriate values, by doing:

printenv WIND_DEV
printenv CFDROOT
printenv SYSTEM
printenv SYSTEM_CPU
ifort --version
icc --version
which mpiexec

They should have values similar to:

$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev
LINUX64-GLIBC2.11
XEON
ifort (IFORT) 13.1.3 20130607
icc (ICC) 13.1.3 20130607
/nasa/sgi/mpt/2.12r26/bin/mpiexec

Note that $HOME will likely be expanded to your full home directory path. If the variables are
not set, or not set correctly, go back to step 4 and try again.

6. Move into the Wind-US build directory.

cd $WIND_DEV

This should put you in the $HOME/WINDUS/wind-dev directory.

7. Configure the makefiles.

If you plan to build both Wind-US and the tools, then follow the instructions for unpacking
the tools distribution before making any changes to the makefiles. The reason for this is that
the tools distribution also contains a copy of the makefiles and will overwrite any changes you
might make here.

The default values in the configuration files should be sufficient to produce an executable. To
be safe, review the contents of the following files or parts of files, where SYSTEM and SYS-
TEM CPU correspond to the SYSTEM and SYSTEM_CPU environment variables, paying special
attention to the items noted below.

When modifying files it is always a good idea to save a copy of the original (i.e., as *.bak),
and for new files to create an empty *.bak file. This makes it easy to identify which files you

21

Wind-US Installation Guide

have changed, and you can use a visual difference program to compare those changes against
the original.

• Makefile.configure

– Set USE_MPI=YES.

– Set USE_PVM=YES.

– Set BUILD_PVM=YES.

– The value of PRECISION may be changed to make all Fortran variables single or double
precision. The default is a mix, with single precision for the mean flow solution and
boundary conditions, and double precision for chemistry data, right-hand-side data,
grid coordinates, and grid metrics.

• source/Makefile.user

– Defines which of the Wind-US modules should be compiled. Only in rare circum-
stances does this file need to be modified.

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

– This file contains the compiler optimizations for the specific system being used.

– If this makefile does not exist, you will need to create it. Usually the easiest way to
do so is to copy and modify one of the existing files. For example:

cp -p source/makefiles/Makefile.include.LINUX64-GLIBC2.4.XEON.opt
source/makefiles/Makefile.include.LINUX64-GLIBC2.11.XEON.opt

– Check the definition of CPP, which is the full path name for the C pre-processor cpp,
to make sure it is correct. You can locate cpp using:

whereis -b cpp

– You may need to change the definitions related to the Fortran and C compilers being
used (i.e., the variables ABI, FC, F90, LD, etc.). There is coding in the Linux makefiles
for various Fortran and C compilers. These lines should be commented/uncommented
as needed, but additional changes may also be necessary or desired. At the time of
this writing, the following Intel 13.1.3 compiler settings were used:

ABI= -Zp8 -pc80 -fp-model strict -fno-alias -heap-arrays \
-fpic -traceback

FC= ifort
FCOMP= $(FC) $(ABI) -pad -ip -DINTEL
FFHOP= -O3 -xSSE4.2 -axAVX
FFOPT= -O3 -xSSE4.2 -axAVX
FFLOW= -O1
FFNOP= -O0

F90= ifort $(ABI) -pad -ip -DINTEL
F90FHOP= -O3 -xSSE4.2 -axAVX
F90FOPT= -O3 -xSSE4.2 -axAVX
F90FLOW= -O1
F90FNOP= -O0

22

4 Installing and Running the Build Distributions on the NAS

CC= icc
CCOMP= $(CC) $(ABI)
ANSI= -ansi
POSIX= -D_POSIX_SOURCE
CFOPT= -O2 -xSSE4.2 -axAVX

CCP= icpc $(ABI)
CPFOPT= -O2 -xSSE4.2 -axAVX

LD= ifort $(ABI) -O3 -ip -pad -xSSE4.2 -axAVX

The compiler flag -ip applies interprocedural optimizations for single-file compilation.
A similar -ipo flag is available for multi-file optimizations, but is not used because
it takes significantly longer to compile. The -pad flag permits the compiler to adjust
the location of variables and arrays in memory to improve performance. The compiler
flags -xSSE4.2 and -axAVX are specific optimizations for the Westmere, Sandy Bridge,
Ivy Bridge, and Broadwell processors that set the baseline code path and alternate
optimized code paths respectively. For more information, visit:

∗ http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_
99.html

– If your preferred compiler doesn’t support the Fortran long integer data type, add
“-DNOFLONG” (without the quotes) to the definition of WINDDEFS. Errors in the compi-
lation of mem management module.f90 about an ambiguous definition for the generic
interfaces alloc and dealloc, involving the specific interfaces for allockindlong_1
and allockindint_1, etc., are an indication that “-DNOFLONG” is needed.

– If necessary, specify the location of the MPI libraries.

MPILIBS= -L/nasa/sgi/mpt/2.12r26/lib -lmpi

The SGI MPI module makes available an mpif90 command that automatically passes
the library information to the Intel compiler through the LD_LIBRARY_PATH, LI-
BRARY_PATH, and F_PATH environment variables. However, all code compiled with
this command will include the MPI libraries, even if they are not needed. This has
been found to cause problems with some of the tools to be compiled below. Using
ifort as the compiler directive and setting the MPILIBS makefile variable ensures
that the MPI libraries will only be included in the Wind-US executable.

8. Compile the source code.

• Create a PBS script ($WIND DEV/make.wind.pbs) to compile Wind-US. For csh and
tcsh use the following:

#PBS -lselect=1:ncpus=4:model=san,walltime=2:00:00
cd $PBS_O_WORKDIR
echo "CFDROOT = $CFDROOT" |& tee make.wind.log
echo "WIND_DEV = $WIND_DEV" |& tee -a make.wind.log
echo "SYSTEM = $SYSTEM" |& tee -a make.wind.log
echo "SYSTEM_CPU = $SYSTEM_CPU" |& tee -a make.wind.log
cd $WIND_DEV
make opt |& tee -a make.wind.log

For sh and ksh use the above, but replace “|&” with “2&>1 |”.

23

http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_99.html
http://www.nas.nasa.gov/hecc/support/kb/Recommended-Compiler-Options_99.html

Wind-US Installation Guide

• Submit the job to the developer queue to compile the code.

cd $WIND_DEV
qsub -q devel make.wind.pbs

This may take roughly 30 minutes once your job begins running. You can use the qstat
command to check on the status.

• If Wind-US compiled successfully you should now have:

$WIND_DEV/$SYSTEM/$SYSTEM_CPU/bin/Wind-US4.exe

If the executable was not produced, then examine the log file ($WIND DEV/make.wind.log)
for compilation errors.

9. Install the executables and scripts.
If you have a previous installation of Wind-US that you wish to update (i.e., CFDROOT points
to some directory other than the WIND_DEV you are building from), you will need to install the
Wind-US and PVM executables. To do that, issue the commands

make install
make install_scripts
make copy_pvm

This will:

• Copy the Wind-US executable to: $CFDROOT/$SYSTEM/$SYSTEM_CPU/bin

• Copy the Wind-US run scripts to: $CFDROOT/bin

• Copy the PVM executables and libraries to: $CFDROOT/pvm/lib/$SYSTEM/$SYSTEM_CPU

• Copy the PVM include files to: $CFDROOT/pvm/include

• Copy the PVM scripts to: $CFDROOT/pvm/lib

10. If this is a new installation, it would probably be best to log out and log back in before running
Wind-US. This executes the shell start-up scripts, modifying the PATH environment variable
to include the newly-created location for the Wind-US executable.

11. Run the wind script.

wind

The new executable should appear in the list of available versions.

Select the desired version
0: Exit wind
1: Wind-US 4.0

See Section 4.6 for running Wind-US on the NAS.

4.5 Building the Tools on the NAS

The tools distribution contains source code for all of the Wind-US pre- and post-processing
utilities. It is designed to be a completely self-contained package, so one could have separate directory
trees for the Wind-US build distribution and the tools build distribution. However, this would lead to
a some duplication of shared routines. To reduce this redundancy, the tools distribution is packaged

24

4 Installing and Running the Build Distributions on the NAS

such that it can overlay the Wind-US distribution. The following instructions assume that all of the
tools are being built in the same tree as Wind-US.

Note that the build procedure for the tools is somewhat more complicated than the Wind-US
build process. Please report problems to the NPARC Alliance User Support Team at nparc-support@
arnold.af.mil or (931) 454-7885.

1. Download the Tools Build Distribution.
This distribution contains all of the necessary run scripts and source files needed to compile and
run the Wind-US utilities. Registered users are provided the source bundle and/or instructions
for downloading it themselves.

dist.alltools.tgz

Some of the tools require lua and cgnslib header files and/or libraries.

• Download lua (4.0.1) from http://www.lua.org/ftp/lua-4.0.1.tar.gz and save as:

lua.4.0.1.tar.gz

Due to changes in the API, newer versions of lua will not work with the Wind-US tools!

• Download cgnslib (2.5.5) from https://cgns.github.io/download.html and save as:

cgnslib.2.5.5.tar.gz

Newer versions of cgnslib may also work.

2. Transfer the source code to NAS (columbia or pleiades).

• Put the *gz files in the (existing) directory $HOME/WINDUS where the source will be
installed. You should now have:

$HOME/WINDUS/alldist.tools.tgz
$HOME/WINDUS/lua.4.0.1.tar.gz
$HOME/WINDUS/cgnslib.2.5.5.tar.gz

3. Unpack the source code on NAS.

Note that this will overwrite any changes you made to the Wind-US makefiles!

cd $HOME/WINDUS
tar xzf dist.alltools.tgz
gunzip -c lua.4.0.1.tar.gz | tar xvf -
gunzip -c cgnslib.2.5.5.tar.gz | tar xvf -

This should extract everything to the following subdirectories:

$HOME/WINDUS/wind-dev/tools-dev/*
$HOME/WINDUS/lua-4.0.1
$HOME/WINDUS/cgns_2.5

4. Update the NAS login scripts.

Users of csh and tcsh shells must edit the $HOME/.cshrc or $HOME/.tcshrc file respectively
and make sure the following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.12r26
setenv MPI_NUM_MEMORY_REGIONS 0
setenv WIND_DEV "$HOME/WINDUS/wind-dev"

25

Wind-US Installation Guide

setenv CFDROOT "$HOME/WINDUS/wind-dev"
setenv TOOLSROOT "$HOME/WINDUS/wind-dev/tools-dev"
source $HOME/WINDUS/wind-dev/bin/cfd.login
source $HOME/WINDUS/wind-dev/tools-dev/bin/tools.login

Similarly, bash, ksh, and sh users must edit their $HOME/.profile file and make sure the
following lines appear:

module load comp-intel/2013.5.192
module load mpi-sgi/mpt.2.12r26
MPI_NUM_MEMORY_REGIONS = 0 ; export MPI_NUM_MEMORY_REGIONS
CFDROOT = "$HOME/WINDUS/wind-dev" ; export CFDROOT
WIND_DEV = "$HOME/WINDUS/wind-dev" ; export WIND_DEV
TOOLSROOT = "$HOME/WINDUS/wind-dev/tools-dev" ; export TOOLSROOT
. $HOME/WINDUS/wind-dev/bin/cfd.profile
. $HOME/WINDUS/wind-dev/tools-dev/bin/tools.profile

This causes the contents of the tools.login (or tools.profile) file to be executed automatically
at login time to set up the environment variable TOOLSROOT that is required for installing
and running the Wind-US tools, and to modify PATH to include the location of the proper
executable.

5. Test the NAS login scripts.

At this point, log out and log back in. Check to see if the environment variables have been set
to appropriate values, by doing:

printenv WIND_DEV
printenv CFDROOT
printenv TOOLSROOT
printenv SYSTEM
printenv SYSTEM_CPU
ifort --version
icc --version

They should have values similar to:

$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev
$HOME/WINDUS/wind-dev/tools-dev
LINUX64-GLIBC2.11
XEON
ifort (IFORT) 13.1.3 20130607
icc (ICC) 13.1.3 20130607

(Note that $HOME may be expanded to your full home directory path.)

If the variables are not set, or not set correctly, go back to step 4 and try again.

6. Compile Lua.

cd $HOME/WINDUS/lua-4.0.1
make

This should create the following files:

$HOME/WINDUS/lua-4.0.1/bin/lua
$HOME/WINDUS/lua-4.0.1/bin/luac

26

4 Installing and Running the Build Distributions on the NAS

$HOME/WINDUS/lua-4.0.1/lib/liblua.a
$HOME/WINDUS/lua-4.0.1/lib/liblualib.a

7. Compile the CGNS library.

cd $HOME/WINDUS/cgnslib_2.5
./configure --prefix=$HOME/WINDUS/cgnslib_2.5 --with-system=LINUX64 \

--enable-64bit
make SYSTEM=LINUX64
mkdir include
mkdir lib
make install

This should create the following files:

$HOME/WINDUS/cgnslib_2.5/include/cgnslib.h
$HOME/WINDUS/cgnslib_2.5/include/cgnslib_f.h
$HOME/WINDUS/cgnslib_2.5/include/cgnswin_f.h
$HOME/WINDUS/cgnslib_2.5/lib/libcgns.a

8. Now that the environment variables are set properly, move into the Wind-US build directory.

cd $WIND_DEV

This should put you in the $HOME/WINDUS/wind-dev directory.

9. Configure the makefiles.

Review the contents of the following files or parts of files, where SYSTEM and SYSTEM CPU
correspond to the SYSTEM and SYSTEM_CPU environment variables, paying special attention to
the items noted below.

• Makefile.configure

– Use the same settings described above for building Wind-US on NAS.

• source/makefiles/Makefile.include.SYSTEM.SYSTEM CPU.opt

– Make the modifications listed above in the instructions for building Wind-US on NAS.

– Comment out the explicit static and shared library settings:

#TOOLS_STATLIB= -static
#TOOLS_SHARLIB= -shared

The default behavior of the Intel compiler is to use shared libraries.

– Provide the proper locations of Tcl, Lua, and CGNS:

TOOLS_TCLLIBS= -L/usr/lib64 -ltcl8.5
TOOLS_LUALIBS= -L$(HOME)/WINDUS/lua-4.0.1/lib -llua -llualib
TOOLS_CGNSLIBS= -L$(HOME)/WINDUS/cgnslib_2.5/lib -lcgns
TCL_INCLUDE= $(INCCMD)/usr/include
LUA_INCLUDE= $(INCCMD)$(HOME)/WINDUS/lua-4.0.1/include
CGNS_INCLUDE= $(INCCMD)$(HOME)/WINDUS/cgnslib_2.5/include

– Provide the proper locations of the Intel libraries:

TOOLS_OSLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \
-lifcore -lirc -limf -lpthread

TOOLS_CPPLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \

27

Wind-US Installation Guide

-lifcore -lirc -limf
MADCAP_OSLIBS= -L/nasa/intel/Compiler/2013.5.192/lib/intel64 \

-lifcore -lcxa -lunwind -lpthread -lstdc++

Depending on which version of the Intel compiler you choose, the library files may
be in a different subdirectory below /nasa/intel. These library paths might already
be present in the enviroment variables.

• source/makefiles/pvm conf/SYSTEM.SYSTEM CPU.def.opt

– Do not bother configuring or creating this file unless you encounter an error during
the compilation process. This file is used to override the default settings given in a
similarly named pvm/conf/SYSTEM.def file.

• tools-dev/Makefile

– This file defines the make dependencies and should not need to be changed.

• tools-dev/libmdgl/SYSTEM.mkf

– This file is used to compile the graphics library needed by GMAN, CFPOST, and
MADCAP.

– If this makefile does not exist, you will need to create it. Usually the easiest way to
do so is to copy and modify one of the existing files.

– Use the settings for the Intel compiler, if they are not already the default.

ABI= -mcmodel=medium -pad -pc80 -fp-model strict -fno-alias
CC= icc
CFLOPT=

Note that CFLOPT is defined to be empty.

10. Compile the tools source.

On NAS, the front end node has the openmotif-devel-* package installed, which makes available
a number of header files needed to compile the Wind-US tools. The worker nodes only have
the library files installed. This means that the tools must be compiled on the front end node.
So, instead of using a batch script like that to compile Wind-US, simply compile the tools from
the command line.

Make sure you are in the build directory.

cd $WIND_DEV

Next, csh and tcsh users should do

make all_tools |& tee make_tools.log

while sh and ksh users should do

make all_tools 2>&1 | tee make_tools.log

Tools can also be compiled individually, by doing

make tool_name

where tool name is the name of the tool. Note that the names to be used for GMAN, CFPOST,
and MADCAP are gmanpre, cfpost prod, and madcapprod, respectively.

28

4 Installing and Running the Build Distributions on the NAS

After compilation is complete, the following programs should appear in directory
$WIND DEV/$SYSTEM/$SYSTEM CPU/bin

USintrpltQ.exe cfpost_prod.exe chmgr.exe mpigetnzone thplt.exe
adfedit cfreorder.exe decompose.exe newtmp timplt.exe
cfappend.exe cfreset_iter.exe delvars npair tmptrn.exe
cfaverage.exe cfrevert.exe fpro parcnl usplit-hybrid.exe
cfbeta.exe cfsequence.exe gman_pre.exe readcf windpar.exe
cfcnvt cfspart gpro.exe resplt.exe wnparc
cfcombine.exe cfsplit.exe gridvel.exe rnparc wplt3d
cflistnum cfsubset.exe icees rplt3d writcf
cfnav.exe cfunsequence.exe jormak.exe scan
cfpart.exe cfview.exe lstvars terp

Depending on the size of the array parameters requested, the thplt.exe executable might
not get created with the default memory model. If it was not created, then edit the file
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt to use the fol-
lowing ABI settings:

ABI= -Zp8 -pc80 -fp-model strict -fno-alias -heap-arrays \
-mcmodel medium -traceback

and recompile just that tool. From the build directory, remove the old object file.

cd $WIND_DEV
rm -f OBJECTS/$SYSTEM/$SYSTEM_CPU/thplt.o

Next, csh and tcsh users should do

make thplt |& tee make_thplt.log

while sh and ksh users should do

make thplt 2>&1 | tee make_thplt.log

Check $WIND DEV/$SYSTEM/$SYSTEM CPU/bin to confirm that thplt.exe was created.

11. In order for the tool scripts to locate the executables, they must be installed in the proper
location. To install the executables, do:

make install_tools

This copies the tools executables to $TOOLSROOT/$SYSTEM/$SYSTEM CPU/bin.

12. If this is a new installation, it would probably be best to log out and log back in again
before running any of the tools. This executes the shell start-up scripts, modifying the PATH
environment variable to include the newly-created location for the tools executables.

4.6 Running Wind-US on the NAS

1. Make a directory containing your Wind-US input files:

run.dat
run.cgd
run.mpc
run.lis (if continuing from a previous solution)
run.cfl (if continuing from a previous solution)

29

Wind-US Installation Guide

The run.mpc file should have the following form:

/ Wind-US parallel processing file for NAS.
/ Currently set to use 2 nodes with 20 processors each
/ and 1 node with 6 processors
/ for a total of 46 cores.
/
host localhost nproc 20
host localhost nproc 20
host localhost nproc 6

Each different type of NAS compute node has a different number of processors. For example,
the Ivy Bridge nodes have 20 processor cores. Therefore, each host entry above has at most
nproc 20. The user will need to experiment to determine whether the best performance is
obtained when all of the processor cores on a given host are used (20+20+6=46) or when
the hosts are most closely balanced (16+16+14=46). The difference between internode and
intranode communication might be mesh dependent.

Users might also want to include a checkpoint command in the above file so that the worker
solutions are sent to the master process at regular intervals. Please see the Wind-US User’s
Manual for more details on the format and features of the parallel processing file.

2. Start the Wind-US script with one of the following commands:

wind -runinplace -cl -usessh -mpmode MPI -mpiver SGI
wind -runinplace -cl -usessh -mpmode PVM

• To specify a non-default NAS charge number (ie, a0101), add the following to the Wind-US
command line.

-grpcharge a0101

To obtain a list of the groups you have access to, type:

groups

• Follow the prompts for your input, output, mesh, and flow files or specify them on the
command line using the proper syntax.

• When asked, indicate that you want to run in multi-processor mode.

• If prompted, enter the number of zones in the cgd file.

• When prompted for the type of queue, choose QSUB PBS QUE.

• Enter the queue name: i.e., long for the long queue.

• Enter the solver run wall clock time.

• Enter the termination processing time.

• Enter the number of nodes to run on. This should match the number of host entries in
your mpc file.

• Enter the number of processors per node to use.

• Enter the number of MPI processes per node to use. This is typically the same as the
number of processors per node. For the default setting of ASSIGNMENT MODE DEDICATED
in the .mpc file, each zone should have its own MPI process. One additional MPI process

30

4 Installing and Running the Build Distributions on the NAS

is required for the master process. You must remember to account for this extra process
when answering the prompts or your run will fail to initialize MPI.

• Enter any optional attributes. For example, to specify that the job should run on Ivy
Bridge nodes use the following:

model=ivy

The model names for other processor types are listed in Table 1.

• When prompted to ”Press CR to submit job, or another key (except space) and CR to
abort,” do the latter. This will create a file called run.job.pl.

The maximum solver execution time is determined by subtracting the termination processing
time from the solver run wall clock time. When the Wind-US run job is submitted, it will
create a preNDSTOP file. When the maximum solver execution time has expired, this file will
be renamed NDSTOP, forcing Wind-US to begin a graceful shutdown.

Users should make sure that the termination processing time is sufficient to allow Wind-US to
complete the termination process. At the end of the *.lis, there is a summary indicating the
time spent during execuation and termination.

Users should also make sure that they request adequate time from the queue in which they
submit their jobs. This is detailed in the next step. Otherwise, the queue will terminate
Wind-US, resulting in a less than graceful shutdown.

3. Edit run.job.pl. If you see a line like the following near the top of the file:

#PBS -l nodes=1234:ppn=2

replace it with

#PBS -l select=2:ncpus=20:model=ivy+1:ncpus=6:model=ivy
#PBS -l walltime=40:00:00
#PBS -m e

This will select 2 nodes with 20 cpus and 1 node with 6 cpus, which matches the request in
the run.mpc file. The walltime can be adjusted as desired (hh:mm:ss) or as an integer number
of seconds, and the last line will send you an email when your job is completed.

Make sure to request at least as much walltime as was specified in the Wind-US prompts above,
because the queuing system does not terminate jobs as cleanly as Wind-US does.

4. If you plan on resubmitting the same job again later (i.e., you want to run 10000 cycles now
and 10000 cycles later) you can save a copy of the run script.

cp -p run.job.pl run.job.pl.bak

To resubmit later, you can skip the above steps and simply reuse the run script.

cp -p run.job.pl.bak run.job.pl

Note that if you increase the number of cycles in your *.dat file, you may need to adjust the
run time specified in the job file. In this case it might be best to answer the Wind-US prompts
again to create a new run.job.pl file.

5. Submit the job to the long queue with the command:

qsub -q long run.job.pl

Some other useful commands are:

31

Wind-US Installation Guide

Command Action
qstat -q List all queue names and run limits.
qstat -a long List all jobs running in the long queue.
qstat -u USER List all jobs running for username USER.
qdel JOBNAME Delete job with name JOBNAME. Useful if Wind-US has not yet started.

6. In order to improve I/O performance for large jobs, Wind-US 3.0 (and later) uses a newer ADF
library than its predecessors. Grid and solution files used with Wind-US will automatically
be upgraded to the new format, and the tools compiled in the above steps will also work with
the new file structure. However, if you transfer the grid or solution file(s) back to your local
workstation your existing tools may not be able to read them. If you experience this problem,
you should upgrade the tools at your local site.

32

5 Porting Wind-US to a New UNIX Platform2

5.1 Porting Guidelines

The source files for Wind-US (and the non-system libraries it depends on) are provided in the
build distribution. See Section 2 for instructions on how to obtain a copy. Put the gzip’ed tar file
containing the build distribution into an appropriate directory. The same one used for the application
and tools distributions would be a good choice. In that directory, unpack the file by doing:

gunzip -c filename | tar xvf -

where filename is the file name, including the .tar.gz extension. Once you have installed the source on
your system, change directory to the wind-dev directory and set the WIND_DEV environment variable
to point to that directory. For example, if the previous step was done in /usr/local/wind, csh and
tcsh users would do

cd wind-dev
setenv WIND_DEV /usr/local/wind/wind-dev

Now you are ready to begin the task of actually porting Wind-US. There are three files you need
to either examine or, if they don’t already exist, create:

• $WIND DEV/Makefile.Configure

This file contains generic information such as the name of the make utility, where to find the
source for the various components of Wind-US, and whether or not to build PVM. In addition,
this file defines the machine and CPU type for which Wind-US will be built. By default,
these are set from the SYSTEM and SYSTEM_CPU environment variables. If this file doesn’t exist,
download the build distribution again — something went very wrong.

• $WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt

This file contains system-specific information, such as compiler names, optimization switches,
machine-specific compilations, the name of the awk command, the location of the C pre-
processor cpp, and extra libraries which must be linked in. Pay particular attention to the
MCHNSRCS lines in the “Common File directory special rules” section. If you are compiling for
a completely new machine, you may have to create one or more of these files (which are found
in $WIND DEV/libcfd/machine.lib). You may, however, be able to use files created for other
machines.

Note: There are other possible extensions than .opt for this file. If you wish to compile for
use with a debugger, create a Makefile.include... with a .dbx extension. See the SGI files for
examples. Another possible extension is .pure, which defines the compilation configuration for
use with the Purify debugging software package.

• $WIND DEV/source/makefiles/pvm conf/$SYSTEM.$SYSTEM CPU.def.opt

This is the PVM configuration file. If your system is not currently supported, check in
$WIND DEV/pvm/conf to see if a configuration file for your system already exists. Note
that the definition of SYSTEM may be different for PVM than for Wind-US. If you cannot find
a pre-existing configuration file for your system, you will have to create one. Choose a file for
a system similar to yours and use that as a starting point.

Note: As before, there are other extensions besides .opt. See the SGI files for examples.
2The material in this section was originally written by Chris Nelson of Sverdrup Technology, Inc. - AEDC Group.

33

Wind-US Installation Guide

When all three files exist and everything appears in order, then simply type make opt (if you
want to compile for optimization) and the make system should take care of the rest. If you type
make by itself (or make help), a list of all the compilation options will be printed.

5.2 Frequently (or not) Encountered Problems

1. The SYSTEM and SYSTEM_CPU variables are not being set in a way that makes sense for my
system. What can I do?

It is likely that the pvmgetarch and pvmgetcpu scripts need to be modified to detect your
particular system. These scripts are found in the $CFDROOT/bin directory. You will have
to determine for yourself how the scripts can correctly distinguish your system from others,
but the examples already in them should get you started.

Once you have modified the files, you will need to copy them to several different places. Copy
$CFDROOT/bin/pvmgetarch to $CFDROOT/pvm/pvmgetarch-cfd and also to
$WIND DEV/pvm/lib/pvmgetarch-cfd. Copy $CFDROOT/bin/pvmgetcpu to
$CFDROOT/pvm/pvmgetcpu-cfd.

Ideally these files should be links, and perhaps some day they will be.

2. Can I cross-compile Wind-US for a different system using these makefiles?

If you have a compiler that is capable of compiling for many different machines/CPUs, then
you may want to use a single machine to create executables for all of them. To some extent,
this is possible, but it will take some extra work on your part.

First, modify $WIND DEV/Makefile.configure so that SYSTEM_SUFFIX and SYSTEM_BLD_CPU
are set to the machine you wish to compile for. The extra work comes because the PVM
compilation system is not set up for cross-compiling. Therefore, you must set BUILD_PVM to
NO and obtain (by one means or another) PVM libraries and executables for each machine
you wish to compile for. For SGI workstations with MIPS processors, the default is to
compile PVM for the lowest common denominator CPU, so, for a given operating system,
you should be able to use the same PVM files for R10000 (and up) machines.

3. I only have a single processor machine. Do I really have to mess with all this parallel stuff?

No, you don’t. To turn off the parallel capabilities of Wind-US, edit
$WIND DEV/Makefile.configure and set BUILD_PVM to NO. Next, edit
$WIND DEV/source/Makefile.user and remove pssubs from the LINK_MODULES line and add
it to the DUMMY_MODULES line.

4. The compilation gets all the way to the end, and then fails with complaints about rcutv1,
rcutaa, and rcimsc being unresolved symbols. What gives?

This problem pops up on Sun workstations (and maybe others) because awk is not working
as expected. Check to see if nawk is available on your system. If it is, edit
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt and set the
AWK variable to nawk.

5. I modified $WIND DEV/source/makefiles/Makefile.include... (or
$WIND DEV/source/makefiles/pvm conf/$SYSTEM...def...), but when I re-compile, none
of my changes are picked up. What is wrong?

The problem is that the files that are actually used for the compilation are not the ones
under $WIND DEV/source/makefiles. The actual files are:

34

5 Porting Wind-US to a New UNIX Platform

$WIND DEV/Makefile.include.$SYSTEM.$SYSTEM CPU and
$WIND DEV/pvm/conf/$PVMSYS.def, where $PVMSYS is set by
$WIND DEV/pvm/lib/pvmgetarch. When you make changes, you must either copy the files
to their final destination or “select” the makefiles for the type of build you’re doing (using, for
example make select_opt if you want to compile with optimization). When you run one of
the “global re-build” compilations (e.g., make opt) then the “select” is done automatically.
Ideally, the system should automatically check to see if any of the configuration files have
been modified, but right now they don’t.

6. I modified $WIND DEV/Makefile.include.SYSTEM.SYSTEM CPU (or
$WIND DEV/pvm/conf/$PVMSYS.def), but when I tried to build Wind-US, it didn’t seem
to find my changes. I checked the files, and my changes were gone. What happened?

See the answer to #5, above. The short answer is that your changes were overwritten. You
have to modify the files under $WIND DEV/makefiles and “select” them in order to be sure
that the changes will “stick”.

7. My make utility complains that there are errors and aborts before anything gets compiled.
Why?

IBMs seem to be particularly bad about this. The “errors” are usually not errors in the sense
that anything is catastrophically wrong, but rather, in the process of house-cleaning, the
make system may be trying to remove files that don’t exist or is checking to see if a file does
exist when it doesn’t. The solution is to modify $WIND DEV/Makefile.configure and add a
-i switch to the MAKE and PVMMAKE variables. Sometimes, switching to gmake will solve the
problem, but be aware that the PVM make system has make hardwired. It may also be
necessary to start the make process with the -i switch (e.g. make -i opt).

8. When I try to compile, it gets to a certain point and then just hangs. What is the problem?

The system of makefiles used to build Wind-US is pretty complex, and some versions of make
just can’t handle this complexity. The weakest link appears to be in the PVM build. If your
make utility is not up to the task, try using another one (such as gmake). Since the PVM
makefiles are hardwired to use make, you may have to use an alias rather than changing
Makefile.configure. For example, on the HP/Convex CSPP system, it might be necessary to
alias make to gmake.

9. I’m getting undefined symbols at the end of my compilation, but it’s more than just the three
you mentioned in question #4. What are likely causes of the problem?

The most likely explanation is that your system does not load all the libraries you need by
default. Run grep on some of the symbols that it complains about (ignoring post-pended
underscores — i.e. psexit, not psexit_) and see if the routines are from within Wind-US:

cd $WIND_DEV/source
grep the_unknown_symbol */*

If that fails to find anything, check in libcfd :

cd $WIND_DEV/libcfd
grep the_unknown_symbol */*

If you still can’t find it, try libadf :

cd $WIND_DEV/libadf
grep the_unknown_symbol *

35

Wind-US Installation Guide

If that fails as well, then hunt through the $WIND DEV/pvm subdirectories in a similar
fashion. Once you are satisfied that the symbol is not from anything in the Wind-US
distribution, you will have to poke around the system libraries to identify which ones should
be added to the EXTRALIBS line in
$WIND DEV/source/makefiles/Makefile.include.$SYSTEM.$SYSTEM CPU.opt (or .dbx
etc.).

If the symbols are from within Wind-US, you need to look back through the compiler listing
to see what messages were output when the library which contains that routine was compiled
to see what went wrong.

10. I’m having trouble compiling the ADF library. What can I do?

The ADF core library (libadf) has only been ported to a finite number of machines. If your
machine is not one of them, you may have to add some lines to ADF fbind.h for your system.

11. I’m getting some fairly bizarre compiler errors when compiling the Common File library.
What is going on?

As with the ADF library (see #10), the Common File library has only been ported to a
limited number of machines. Check in $WIND DEV/libcfd/include/bind f and c.h to see if
definitions for your system are there. If not, you will have to add them.

12. Okay, I got libadf and libcfd to compile, but now Wind-US itself is complaining. Where
should I look?

As with libadf (see #10) and libcfd (see #11), you may need to add lines appropriate for
your system to a header file. In this case, it’s $WIND DEV/source/include/fbind.h.

13. I’m having trouble getting PVM to compile and run properly. What should I do?

If the problem seems to be with the make system itself, then you may be able to successfully
compile “manually” by using the following procedure (modify as needed for your particular
shell):

cd $WIND_DEV/pvm
setenv PVM_ROOT $cwd
make clean
make

If that works, then copy the PVM libraries (in $WIND DEV/pvm/lib/$PVMSYS) to the
$LIBDIR defined in Makefile.configure. Also remember to copy the PVM executables to
$CFDROOT/pvm/$SYSTEM/$SYSTEM CPU.

An additional possibility is that you have another version of PVM already installed, and
certain environment variables may be set for that version which conflict with the version of
PVM shipped with Wind-US. The solution is to make sure that neither of the environment
variables PVM_ROOT nor PVM_ARCH are set prior to compiling or running Wind-US. (The
various scripts should set these variables as needed).

If you still can’t compile or run PVM, then you may need to talk to the PVM developers (see
http://www.epm.ornl.gov/pvm/) to see about porting it to your system. In the meantime,
you can still run Wind-US in single processor mode (see #3).

14. I’ve gone through the whole process you describe above (in Section 5.1), but when I type make

opt, I get one or more errors dealing with file permissions, like

36

5 Porting Wind-US to a New UNIX Platform

cp: cannot create /usr/local/wind/wind-dev/include/ADF.h:
Permission denied.

What is the problem?

By default (for security reasons, I believe), the source files only have “read” permission
enabled. Thus, when the make system tries to do an operation which results in a “write”
(which happens mostly when it’s setting up the include directory), an error results and the
system screeches to a halt. The solution is to make sure that you have write permission for
all files and directories under $WIND DEV.

15. When running the Wind-US code on my brand new SGI R12000 system, I get the following
error message

Program aborting due failure in common I/O library call.
Subroutine called: CFRWFC
ADF 54: A node-id of 0.0 is not valid.

What should I do?

The cause of this problem has been traced to a change in the default floating point exception
mode for R12000 systems. R10000 and R4400 SGI systems are not affected.

To run Wind-US on R12000 systems, you can upgrade to IRIX 6.5.4, and make sure that the
kernel parameter “fpcsr_fs_bit” is equal to zero. After upgrading to IRIX 6.5.4, the value
of this parameter may be determined by doing

systune fpcsr_fs_bit

If the value is non-zero, it should be changed by doing (as root)

systune fpcsr_fs_bit 0

The change in the value of fpcsr_fs_bit occurs dynamically, and does not require rebooting
the system.

16. I finally got everything to compile and link, but when I try to run the code, I get a “Program
aborting due failure in common I/O library call” message, and then the code exits. What
should I do?

If you’re running on an SGI R12000 system, see the previous question. Otherwise . . .

Ironically, the weakest link in the Wind-US chain (as far as porting goes) has nothing to do
with the solver algorithm, parallelization, or memory management (in the fluid solver). The
weakest link is, in fact, the file I/O system. The problems all seem to center around the ADF
core library. Even if you did not see a specific ADF error code (e.g., “ADF 54: A node-id of
0.0 is not valid”), if you can run the same case (with the same files) on another machine, the
problem is almost certainly in libadf.

If this happens, please notify the code developers so that we can work on finding a fix.
Obviously, if we don’t have access to a machine of the type you are working on, then our
ability to solve the problem is limited, but at least we can note the problem. If you feel
energetic, you could also notify the CGNS folks over at https://cgns.github.io/ that you
found a problem.

You can, of course, attempt to debug it yourself. If you do find a solution, please send it to
us so that we can make the fix available to everyone. If, however, you don’t have the time or
the inclination for that, then your best bet is to convert your input Common Files (which are
version 3.0 by default) to version 2.0. Version 2.0 of the Common File system does not use the

37

https://cgns.github.io/

Wind-US Installation Guide

ADF core, and, so far, it has always worked when version 3.0 wouldn’t. The way to convert
the files is to use the cfcnvt utility. Choose option 3, “Compress a Common File”, answer the
questions, and then enter “2” when asked “Output CF version number (2 or 3 (default))”.3

17. When compiling the Common File library, I’m getting messages about an undefined function
called “tempnam”. What should I do?

Edit all Makefile.include.$SYSTEM.$SYSTEM CPU.* files (found in
$WIND DEV/makefiles). Look for a line that defines “CFDEFS”. On this line add
“-DNO_TEMPNAM”. Next, “select” the appropriate compilation type (e.g., make select_opt)
and re-compile.

3 Note that this assumes you have access to a system for which the tools executables, including cfcnvt, are available.

38

	Overview
	Obtaining Wind-US and the Tools
	NSCKN (NASA Safety Center Knowledge Now)
	Wind Projects
	Tools Projects
	Process Projects

	Installing the Build Distributions
	Building Wind-US
	Building the Tools
	Tips for Installing on a UNIX System
	Using Symbolic Links for Similar Systems
	Installation for NFS Access
	Installation for Parallel Execution on Distributed Systems

	Installing and Running the Build Distributions on the NAS
	Security Issues on the NAS
	Storage Issues on the NAS
	Computational Resources on the NAS
	Building Wind-US on the NAS
	Building the Tools on the NAS
	Running Wind-US on the NAS

	Porting Wind-US to a New UNIX Platform
	Porting Guidelines
	Frequently (or not) Encountered Problems

